Skip to main content

Algebra Exercises

Cubes, Expansion, Factorization

1️. Cubes Using Formula

Use the identity:

  • (a+b)3=a3+3a2b+3ab2+b3(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3

  • (ab)3=a33a2b+3ab2b3(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3

Examples:

  1. (x+2)3(x + 2)^3

    x3+3x22+3x4+8x^3 + 3x^2 \cdot 2 + 3x \cdot 4 + 8

    = x3+6x2+12x+8x^3 + 6x^2 + 12x + 8

  2. (3a5)3(3a - 5)^3

    27a3135a2+225a12527a^3 - 135a^2 + 225a - 125


Write the Expressions in Expanded Form

Examples:

  1. Expand (2x1)3(2x - 1)^3

    8x312x2+6x18x^3 - 12x^2 + 6x - 1

  2. Expand (a+12)3(a + \dfrac{1}{2})^3

    a3+32a2+34a+18a^3 + \dfrac{3}{2}a^2 + \dfrac{3}{4}a + \dfrac{1}{8}


Write in the Form of (a+b)3(a + b)^3 or (ab)3(a - b)^3

Examples:

  1. x3+6x2+12x+8x^3 + 6x^2 + 12x + 8

    (x)3+3(x)2(2)+3(x)(2)2+(2)3(x)^3 + 3 \cdot (x)^2 \cdot (2) + 3 \cdot (x) \cdot (2)^2 + (2)^3

    (x+2)3(x + 2)^3

  2. 27a3135a2+225a12527a^3 - 135a^2 + 225a - 125

    (3a)33(3a)2(5)+3(3a)(5)2(5)3(3a)^3 - 3 \cdot (3a)^2 \cdot (5) + 3 \cdot (3a) \cdot (5) ^2 - (5)^3

    (3a5)3(3a - 5)^3


Factorize (Including Fractional Coefficients)

Examples:

  1. Factorize: x3+32x2+34x+18x^3 + \dfrac{3}{2}x^2 + \dfrac{3}{4}x + \dfrac{1}{8}

    → Recognize as (x+12)3(x + \dfrac{1}{2})^3

  2. Factorize: 8a327b38a^3 - 27b^3

    → Use difference of cubes: (2a)3(3b)3(2a)^3 - (3b)^3

    = (2a3b)(4a2+6ab+9b2)(2a - 3b)(4a^2 + 6ab + 9b^2)

  3. Factorize: 18x3+34x2+32x+1\dfrac{1}{8}x^3 + \dfrac{3}{4}x^2 + \dfrac{3}{2}x + 1

    → Recognize as (12x+1)3\left( \dfrac{1}{2}x + 1 \right)^3


Factorize the expression, a4+a2b2+b4a^4 + a^2b^2 + b^4.

Here, = (a2)2+2a2b2a2b2+(b2)2(a^2)^2 + 2a^2b^2 – a^2b^2 + (b^2)^2

= (a2+b2)2(ab)2[(a+b)2=a2+2ab+b2](a^2 + b^2)^2 – (ab)^2 [⸪ (a + b)^2 = a^2 + 2ab + b^2]

= (a2+b2+ab)(a2+b2ab)[a2b2=(a+b)(ab)](a^2 + b^2 + ab) (a^2 + b^2 – ab) [⸪ a^2 – b^2 = (a + b) (a – b)]

= (a2+ab+b2)(a2ab+b2)(a^2 + ab + b^2) (a^2 – ab + b^2)

a4+a2b2+b4=(a2+ab+b2)(a2ab+b2) \therefore a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2) (a^2 – ab + b^2)


Factorization Examples

Factorize: y4+y2+1y^4 + y^2 + 1

Treat as quadratic in y2y^2.

y4+y2+1y^4 + y^2 + 1

= y4+2y2y2+1y^4 + 2y^2 - y^2 + 1

= y4+2y2+1y2y^4 + 2y^2 + 1 - y^2

= (y2+1)2y2(y^2 + 1)^2 - y^2

= (y2+y+1)(y2y+1)(y^2 + y + 1)(y^2 - y + 1)


Factorize: 49a4154a2b2+9b449a^4 - 154a^2b^2 + 9b^4

Observe a "squared minus square" form:

49a4154a2b2+9b449a^4 - 154a^2b^2 + 9b^4

= (7a2+3b2)2(14ab)2(7a^2 + 3b^2)^2 - (14ab)^2

= (7a2+14ab+3b2)(7a214ab+3b2)(7a^2 + 14ab + 3b^2)(7a^2 - 14ab + 3b^2)


Factorize: x4y4+x2y2+1\dfrac{x^4}{y^4} + \dfrac{x^2}{y^2} + 1

Let z=xyz=\dfrac{x}{y}.

Then, x4y4+x2y2+1\dfrac{x^4}{y^4} + \dfrac{x^2}{y^2} + 1

= z4+z2+1=(z2+z+1)(z2z+1)z^4 + z^2 + 1 = (z^2 + z + 1)(z^2 - z + 1).

Substituting z=xyz=\dfrac{x}{y}

= (x2y2+xy+1)(x2y2xy+1)(\dfrac{x^2}{y^2} + \dfrac{x}{y} + 1) (\dfrac{x^2}{y^2} - \dfrac{x}{y} + 1)


HCF and LCM – Examples

Example: Find the HCF of 24 and 36

Method: Prime Factorization

  • 24=23324 = 2^3 \cdot 3

  • 36=223236 = 2^2 \cdot 3^2

HCF = Product of lowest powers of common primes:

=223=12= 2^2 \cdot 3 = 12


Example: Find the LCM of 24 and 36

Method: Prime Factorization

  • 24=23324 = 2^3 \cdot 3

  • 36=223236 = 2^2 \cdot 3^2

LCM = Product of highest powers of all primes:

=2332=72= 2^3 \cdot 3^2 = 72


Example: Find HCF and LCM of 18 and 30

  • 18=23218 = 2 \cdot 3^2

  • 30=23530 = 2 \cdot 3 \cdot 5

HCF = 23=62 \cdot 3 = 6

LCM = 2325=902 \cdot 3^2 \cdot 5 = 90


Example: Relationship Between HCF and LCM

Question:

Find the HCF and LCM of 12 and 15. Verify:

HCFLCM=Product of numbers\text{HCF} \cdot \text{LCM} = \text{Product of numbers}

  • 12=22312 = 2^2 \cdot 3

  • 15=3515 = 3 \cdot 5

HCF = 33

LCM = 2235=602^2 \cdot 3 \cdot 5 = 60

Check:
360=1803 \cdot 60 = 180

1215=18012 \cdot 15 = 180


Example: Word Problem Using HCF

Question:

Two ropes are 60 cm and 84 cm long. What is the greatest length that can be used to cut both ropes without remainder?

Solution:
Find HCF of 60 and 84:

  • 60=223560 = 2^2 \cdot 3 \cdot 5

  • 84=223784 = 2^2 \cdot 3 \cdot 7

HCF = 223=122^2 \cdot 3 = 12 cm


Example: Word Problem Using LCM

Question:

Two traffic lights blink every 45 seconds and 60 seconds respectively. After how many seconds will they blink together?

Solution:
Find LCM of 45 and 60:

  • 45=32545 = 3^2 \cdot 5

  • 60=223560 = 2^2 \cdot 3 \cdot 5

LCM = 22325=1802^2 \cdot 3^2 \cdot 5 = 180 seconds


Example: Fractional HCF and LCM

Question:

Find HCF and LCM of 34\frac{3}{4} and 56\frac{5}{6}

Method:

  • HCF = HCF of numeratorsLCM of denominators\dfrac{\text{HCF of numerators}}{\text{LCM of denominators}}

  • LCM = LCM of numeratorsHCF of denominators\dfrac{\text{LCM of numerators}}{\text{HCF of denominators}}

Solution:

  • HCF of 3 and 5 = 1

  • LCM of 4 and 6 = 12

    → HCF = 112\dfrac{1}{12}

  • LCM of 3 and 5 = 15

  • HCF of 4 and 6 = 2

    → LCM = 152\dfrac{15}{2}


Linear Equations

Word Problems – Simultaneous Equations

Example 1: Age Problem

Question: A father is 30 years older than his son. Their combined age is 50. Find their ages.

Let:

xx = son's age

x+30x + 30 = father's age

Equation:
x+(x+30)x + (x + 30)

= 502x+3050 \Rightarrow 2x + 30

= 50x50 \Rightarrow x

= 1010

Father's age = 10+30=4010 + 30 = 40


Example 2: Money Problem

Question: A man has Rs. 100 in 5 and 10 rupee notes. He has 12 notes in total. How many of each?

Let:

  • xx = number of Rs. 5 notes

  • yy = number of Rs. 10 notes

Equations:

  • x+y=12x + y = 12

  • 5x+10y=1005x + 10y = 100

Solve using substitution or elimination:

  • Multiply first by 5: 5x+5y=605x + 5y = 60

  • Subtract: (5x+10y)(5x+5y)(5x + 10y) - (5x + 5y)

= 100605y100 - 60 \Rightarrow 5y

= 4040

y=8\Rightarrow y = 8

x=128=4\therefore x = 12 - 8 = 4

Answer: There are 4 notes of Rs. 5 and 8 notes of Rs. 10


Example 3: Geometry Problem

Question: The perimeter of a rectangle is 40 cm. Its length is 4 cm more than its breadth. Find dimensions.

Let:

  • xx = breadth
  • x+4x + 4 = length

Perimeter: 2(x+x+4)2(x + x + 4)

= 402(2x+4)40 \Rightarrow 2(2x + 4)

= 404x+840 \Rightarrow 4x + 8

= 4x=408=324x = 40 -8 = 32

= x=324x = \dfrac{32}{4}

x=8\Rightarrow x = 8

Length = 8+4=128 + 4 = 12

Answer: Length = 12 cm, Breadth = 8 cm